Inner Products, Group, Ring of Quaternion Numbers

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inner Products, Group, Ring of Quaternion Numbers

The articles [9], [1], [3], [4], [6], [5], [2], [7], and [8] provide the notation and terminology for this paper. We use the following convention: q, r, c, c1, c2, c3 are quaternion numbers and x1, x2, x3, x4, y1, y2, y3, y4 are elements of R. 0H is an element of H. 1H is an element of H. Next we state several propositions: (1) For all real numbers x, y, z, w holds 〈x, y, z, w〉H = x+y · i+ z · ...

متن کامل

Inner Products and Angles of Complex Numbers

One can prove the following propositions: (1) For all real numbers a, b holds −(a + bi) = −a + (−b)i. (2) For all real numbers a, b such that b > 0 there exists a real number r such that r = b · −⌊ b ⌋ + a and 0 ¬ r and r < b. (3) Let a, b, c be real numbers. Suppose a > 0 and b ­ 0 and c ­ 0 and b < a and c < a. Let i be an integer. If b = c + a · i, then b = c. (4) For all real numbers a, b h...

متن کامل

The Quaternion Numbers

In this article, we define the set H of quaternion numbers as the set of all ordered sequences q = 〈x, y,w, z〉 where x,y,w and z are real numbers. The addition, difference and multiplication of the quaternion numbers are also defined. We define the real and imaginary parts of q and denote this by x = R(q), y = I1(q), w = I2(q), z = I3(q). We define the addition, difference, multiplication again...

متن کامل

Some Operations on Quaternion Numbers

(1) <(z1 · z2) = <(z2 · z1). (2) If z is a real number, then z + z3 = <(z) + <(z3) + =1(z3) · i+ =2(z3) · j + =3(z3) · k. (3) If z is a real number, then z − z3 = 〈<(z)−<(z3),−=1(z3),−=2(z3), −=3(z3)〉H. (4) If z is a real number, then z · z3 = 〈<(z) · <(z3),<(z) · =1(z3),<(z) · =2(z3),<(z) · =3(z3)〉H. (5) If z is a real number, then z · i = 〈0,<(z), 0, 0〉H. (6) If z is a real number, then z · j...

متن کامل

Some Operations on Quaternion Numbers

In this article, we give some equality and basic theorems about quaternion numbers, and some special operations. the notation and terminology for this paper. In this paper z 1 , z 2 , z 3 , z 4 , z are quaternion numbers. The following propositions are true: (1) (z 1 · z 2) = (z 2 · z 1). (2) If z is a real number, then z + z 3 = (z) + (z 3) + 1 (z 3) · i + 2 (z 3) · j + 3 (z 3) · k. (4) If z i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Formalized Mathematics

سال: 2008

ISSN: 1898-9934,1426-2630

DOI: 10.2478/v10037-008-0019-x